

On the Optimal Cell Size in a Sensor Network Aided Cognitive Radio System

Pål Grønsund and Ole Grøndalen

SDR'11, WInnComm Europe Brussels, June 22-24, 2011

The SENDORA concept can be described as a "Sensor Network aided Cognitive Radio" technology

Performance of a sensor network aided cognitive radio system

Goal: To find the optimal cell size of a sensor network aided cognitive radio system

Method and tool: Simulations in the network simulator NS-2

Networks

- 1. Secondary Network (WiMAX with SENDORA functions, OFDMA)
- 2. Primary Network (WiMAX, OFDMA)
- 3. Wireless Sensor Network (rectangular grid of energy detecting sensors)

System Details

- Channels: 10 MHz channels
- Duplexing: Time Division Duplex (TDD)
- Frequency band: 2GHz
- Modulation: BPSK, QPSK, 16-QAM, 64-QAM
- Coding rates: 1/2, 2/3, 3/4

Simulation Scenario

Primary System

Inter-BS-dist: 2km Radius rp=1.15km

Secondary System

Radius rs=?

Primary BS

Primary terminal

Secondary BS

Secondary terminal

Key parameters for simulation scenario

- **Requirement:** the secondary system has to operate in such a way that the maximum interference experienced by the primary network corresponds to a 0.5 dB increase of the noise-floor with 90% probability.
- **Sensor threshold:** -82.5dBW, detection probability \geq 95% (from D2.1)
- **Sensing:** Energy detection, duration 30ms, frequency 1/2 second

Parameter	Primary System	Secondary System
Traffic	CBR: 200Kbps	CBR: 1Mbps
Traffic direction	Downlink	Downlink
Nodes per BS	4	4
Nodes location	Random	Random
Nodes mobility	Random waypoint, random speed 1-20 m/s	No
Modulation / FEC	QPSK 1/2	QPSK 1/2
EIRP	13.5 dBW (for 90% area coverage)	-40, -35, , -5 dBW

Three cases for secondary cell size were studied

- 1. Secondary cell size = $\frac{1}{2}$ primary cell size (0.575 km)
 - 25% co-location with primary BSs
- 2. Secondary cell size = $\frac{2}{3}$ primary cell size (0.767 km)
 - 11.1% co-location with primary BSs
- 3. Secondary cell size = <u>primary cell size</u> (1.15 km)
 - 100% co-location with primary BSs

Secondary system performance

Secondary system performance

Impact on primary system performance

Secondary system throughput for increasing numbers of Primary Users

In Conclusions

Secondary cell size equals 1/2 and 2/3 the primary cell size performed well and achieved maximum throughput

- Respectively, 25% and 11.1% of secondary BSs will not be co-located with primary BSs, leading to high costs for the establishment of new sites.
- This points in the direction of smaller and less expensive BSs such as WiFi access points and femto-cells.

Equal cell size for the secondary and primary systems with a cellular reuse pattern with seven frequencies is difficult to achieve

- 100% BS co-location will not be achieved
- Potential solutions which should be studied for future work
 - Cell sectorization
 - Relaxed requirement to allow secondary operation, and dynamic requirements when primary nodes have good connectivity
 - Dynamic transmit powers

Questions?
Pål Grønsund (Pal.Gronsund@telenor.com)
http://palgronsund.com

