

PICOCEPTOR: ADVANCED ARCHITECTURE FOR MINIATURE
SOFTWARE DEFINABLE RADIO SYSTEMS

Clark Pope (DRS Signal Solutions, Gaithersburg, Md; clark.pope@DRS-SS.com)

Michael Kessler (DRS Signal Solutions, Gaithersburg, Md; michael.kessler@DRS-SS.com)

ABSTRACT

This paper introduces a novel software definable radio
(SDR) architecture, called Picoceptor[1], which
combines tight RF integration, a reconfigurable field-
programmable gate array (FPGA) system on a chip
(SOC), embedded Linux, and a USB 2.0 on-the-go (OTG)
interface in a low-cost, low-power platform that fits into a
shirt pocket. This advanced SDR system technology
provides extensive savings in size, weight, and power
(SWaP) by both increasing the functionality and
flexibility of the processing hardware as well as
eliminating the need for several typical system
components. This paper also provides a brief history of
SDR approaches and technology as well as a detailed
description of the design objectives and choices when
developing the Picoceptor architecture. The
development tool set and environment are described.
Finally, applications such as geo-location and spectral
search are discussed with detailed implementation notes
to highlight the adaptability and flexibility of the
architecture for a wide range of SDR functions.

HISTORY OF SDR TECHNOLOGY

In the late 1980’s, DRS Signal Solutions, Inc. (DRS-SS)
was one of the first companies to incorporate digital
signal processor (DSPs) in its radios. As soon as radios
contained reprogrammable DSP devices, instead of fixed
analog circuits, the desire for a software definable radio
arose.

The evolution of various platforms is depicted in
Figure 1. Ten years ago a typical SDR consisted of VXI
or VME modules from various vendors. At least five
major components were required for a system: a Slot 0
controller, a VXI rack, a tuner, a digitizer, and a DSP.

Five years ago, it became possible to integrate the

tuner, digitizer, and DSP into a single module. This
resulted in the two-slot solution shown in the middle of
Figure 1. This evolution cut the cost, weight, power, and
size of systems by half or more. This generation of
DRS-SS products was dubbed Sunrise.

1997
$50-$100K
100S OF WATTS
30-50 POUND

VXI CHASSIS

S

S
LO

T
ZE

R
O

2002
$30-$50K
10S OF WATTS
10-30 POUND

VME CHASSIS

2007
$10-$20K
<5 WATTS
2-3 POUND

USB

TU
N

ER

D
IG

IT
IZ

E
R

D
S

P

S
LO

T
O

N
E

S
U

N
R

IS
E

PI
C

O
C

EP
TO

R

Figure 1. Evolution of SDR Platforms

With the advent of SOC FPGAs, feature-rich and

embeddable operating systems, standardized USB bus
peripherals, and advances in miniature RF components, it
is today possible to implement the same functionality in
the palm of a hand at a fraction of the SWaP. This
generation of technology is called Picoceptor.

The software for SDR systems has undergone a

similar evolution. Ten years ago SDR processing was
mostly a cobbled together code base consisting of pieces
of vendor-provided libraries along with customized local
intellectual property (IP). Today there are entire suites of
software tools to aid in the development and deployment
of SDR applications. In the open source world there is
GNU radio. This approach is free and feature-rich, but
does not provide professional-level support. For
professional applications The MathWorks MATLABTM,
Xilinx, Pentek, and iVeia (among others) can provide full
tool suites. For applications requiring adherence to the
Joint Tactical Radio Service/Software-Compliant
Architecture (JTRS/SCA)[2] , there are several operating
systems (OSs), middleware, and operating environment
toolsets from Prismtech, Zeligsoft, et al.

1. SDR REQUIREMENTS

A generic SDR system is shown in Figure 2. The three
major components are the tuner, which converts radio
frequency (RF) energy to some lower intermediate
frequency (IF) suitable for digitization; a demodulator;
and some control asset such as a personal computer.

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved

Tuner Demod PC
(SDR)

Digital IF I/Q

Spectral Search, Channelizer, Despreading,
PCM, Core Rx functions (agc, scan, signal
strength)

Gnu Radio
X-Midas
Simulink

Winradio...

Pentek
Mercury
AMS
Red-River
Spectrum...

Network

OSSIE

Figure 2. Typical SDR Platform

As shown, there are three key data spigots that must

be accessible in some form: raw analog-to-digital
converter (ADC) output data, baseband in-phase and
quadrature-phase (I/Q) data, and demodulated data or bits.
The raw ADC data allows users to build IF/RF panoramic
displays to help search for signals. The baseband I/Q data
provides the filtered data to users, who can then feed it
into software baseband analysis and demodulation
programs. Finally, the demodulated data is important for
users wanting direct access to the information on the
signal of interest.

As long as the three data taps described above are

available, the SDR system is able to accommodate
virtually any application. There is, of course, a large trade
space where the designer must decide which portions of
the processing to put in software, FPGAs, or DSPs. Each
designer will generally choose a different mix based on
the desired application and their particular skills and
experience.

In addition to providing a flexible data path, the usual

metrics that apply to radios also apply to SDR platforms.
Specifically, SWaP and cost can never be too small and
tuning range, dynamic range, and maximum bandwidth
can never be too large.

Finally, the architecture should provide for expanded

capability in multiple dimensions (more memory,
software upgrades, larger FPGAs, etc.) and not require
users to pay for, or consume power for, features that they
do not use.

2. PICOCEPTOR ARCHITECTURE

This section provides some background on the
technologies available and the ultimate design choices
made for the Picoceptor RF front end, signal processing
hardware, and software.

2.1. RF Front End

In general, three technologies currently exist to allow
converting RF energy to baseband where it can be
processed: direct digitization, direct conversion using RF
application-specific integrated circuits (ASICs), and the
traditional discrete superheterodyne receiver.

The superheterodyne approach is shown in Figure 3.

Here the RF energy (after preselection and amplification)
is mixed with the 1st local oscillator (LO) to an IF. The IF
is then filtered and amplified before mixing with the 2nd
LO whose output is then digitized. Since the radio
selectivity is determined by the IF filter (at a fixed
frequency), it is much easier to optimize the design for
maximum dynamic range. As a result, superheterodyne
systems provide the best overall radio performance at the
expense of some additional complexity.

Figure 3. Superheterodyne Approach

With direct digitization (Figure 4) a large portion of
the RF spectrum is fed into an ADC. By the Nyquist
theorem, the energy up to one half the ADC clock rate can
be accessed. Depending upon the input bandwidth of the
ADC, particular bands can be subsampled to extend the
maximum frequency further. These systems usually
consume a lot of power and have marginal dynamic
range, though they are very inexpensive. The technology
does not yet exist to provide a good multi-gigahertz
general-purpose receiver using direct digitization
although companies like Hypres[12] are improving.

Filter/
Amp ADC FPGA

Figure 4. Direct Digitization

In recent years the various RF components have been

increasingly integrated into ASICs with direct conversion
schemes where the RF energy of interest is directly mixed
to baseband and its I/Q components are digitized. See
Figure 5. These systems are very cheap, but their
performance is limited by the ability to compensate for
phase and gain differences in the I/Q paths. Even with
elaborate compensation techniques, the dynamic range of
direct-conversion receivers is several tens of decibels
worse than the superheterodyne systems.

Filter/
Amp ADC DSP

IF
Filter

(SAW)

1st LO 2nd LO

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved

Figure 5. Direct Conversion.

Given the state of the art of these three approaches,

the superheterodyne approach used in the Picoceptor
front end is still the most suitable architecture for general-
purpose, wide-coverage signal intelligence (SIGINT)
receivers. The Picoceptor designers used a traditional
conversion scheme but carefully selected VCOs, mixers,
and amplifiers to reduce the circuit complexity while still
covering the full 3 GHz tuning range.

2.2. Processing Hardware

Given the current state of technology, the design choices
for body-wearable radios are fairly straightforward. First,
in order to accommodate multiple applications and still
provide sufficient computation resources, it must contain
a modern FPGA. Second, in order to provide the features
users expect, it must be able to host a sizeable operating
system. This determines the random access memory
(RAM) and FLASH memory requirements. Finally, in
order to provide system expansion, only serial bus
standards are appropriate. USB2.0 OTG allows the unit to
operate as either a device or a host, requires low power,
and provides sufficient bandwidth for most applications.

There are several controversial issues. The first is

whether to use a separate processor or a processor
embedded in the FPGA, itself. Good arguments can be
made on either side but the Picoceptor team opted for
the embedded processor so that we would have full
control over the connectivity of the processor. This allows
one to add auxilliary processing units (APUs), busses,
peripherals, direct memory access (DMA) engines, and
switch clocks dynamically as required. It also protects the
design from obsolescence and allows optimal sharing of
the memory resources between the central processing unit
(CPU) and the signal processing in the FPGA fabric.

A second controversy is whether to include an

Ethernet interface in the design. Ethernet is actually very
expensive both in power consumption (500-750 mW) and
in the size of the large RJ-45 connector. In the context of

a body-wearable radio, Ethernet ultimately makes no
sense because there is no place to plug in the other end of
the Ethernet cable. With USB 2.0, however, users who
want an Ethernet interface can simply add a USB-to-
Ethernet adaptor dongle and/or emulate Ethernet over a
simple USB cable using the Linux USBnet driver.[3]

The final back end design is shown in the block

diagram of the Picoprocessor motherboard as shown in
Figure 7. The core design requires only five chips: RAM,
FLASH, FPGA, the USB physical layer (PHY), and a
system management processor (PIC). The design is
modular such that any one of these components can be
upgraded with little effect to the overall system and
software.

INPUT 1
(70MHz IF or

0-25MHz)
Dither

INPUT 2
(70MHz IF or

0-25MHz)

ADC M/S
Clock

REF IN
REF OUT

DDR 1

DDR 2
or

FFT

Time Tag

GPIO

PPC
running

Linux OS

ftp
http

telnet

TCP/IP

USB Host

RS-232

FLASH
32 MByte

SDRAM
64 MByte

FPGA

10-bit
ADC

10-bit
ADC

ADC
Clock

REF
Generator

6~16VDC POWER SUPPLY
DC/DC

RTC, TEMP,
SENSOR, ESN,

SMP

USB 2.0
OTG

SERIAL
(2)

M/S Sync
Signal

Ant Ctl, Event
Trigger, COR

1PPS

PROMJTAG/
Test

MotherboardDigitizer

Figure 7. Picoprocessor Block Diagram

2.3. Software

There are several vendors providing lightweight, real-
time, embedded operating systems. For maximum
features and capabilities the Picoceptor uses embedded
Linux (EL) with a 2.6 kernel. The EL OS design choice
recognizes that real-time extensions can be added if
needed and that most any other OS can run in the same
space as EL. The EL OS gives us the option to be flexible
in our software. It also provides many methods of
communication to the Picoceptor, such as Ethernet over
USB using Transmission Control Protocol/ Internet
Protocol (TCP/IP) or User Datagram Protocol (UDP),
RS-232, and USB. The user may control the Picoceptor
using three-letter mnemonics or through the
Picoceptor-based Web Server using a Web browser as
shown in Figure 8.

The Control Application is a Linux process that
receives messages from any of the various external
interfaces and performs command and control of the
Picoceptor. It is a socket-based program that accepts
input from the user, parses the command, and calls a
custom device driver that controls the FPGA.

Filter/
Amp ADC

DSP
Filter/
Amp

LO

ADCFilter/
Amp

I

Q

90

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved

Figure 8. Picoceptor Web-based GUI

A low-level custom device driver is provided that

allows the user to control and access the Picoceptor
FPGA hardware. The result of this effort is a kernel
module that contains functions that can be called by the
control application using an application programming
interface (API). The device driver allows the user to
change parameters such as frequency and attenuation that
are mapped to FPGA registers. The device driver also
allows the user to get snapshot data from the FPGA.

Linux also provides the user with the capability to

write their own applications and load them onto the
Picoceptor. Users can place their own applications in
the RAMDISK on the Picoceptor using File Transfer
Protocol (FTP) and execute them via a telnet session or
run them as a Linux service.

2.4. Development Tools

Based on experience with previous SDR developments, it
is clear that user requirements range from turnkey
solutions with little or no technical knowledge
requirements to “blank slate” systems for users wanting to
load their own OS, application software, and/or signal
processing circuits. As a result the Picoceptor is
delivered as a fully functioning radio; nevertheless, with
the purchase of the Pico Developer’s Package (PDP),
users can get full access to the development tools used at
the factory.

The PDP contains manuals, programming cables,
several USB devices, test cables, RF cables, and a DVD.
The DVD contains a VMWare[4] image of our
development environment.

The VMware image runs in the VMware player as

shown in Figure 9. The virtual machine (VM) is a
complete Ubuntu 6.06 Linux[5] installation containing the

Start

Vmware Player

Host = Windows XP Pro

Guest = Ubuntu 6.06 LTS

Figure 9. PDP VMware Image

cross-compilers, source code, and FPGA tools for the
Picoceptor.

The VM (a) eliminates installation problems (b)
ensures all users have the exact same tools and versions,
and (c) allows Windows users to easily access the Linux-
based tools. Some disadvantages of the VM are that it has
heavy disk and memory requirements, runs more slowly
than native installations, and has limited hardware
support. None of these limitations has presented any
significant problem for Picoceptor developers.

With the VM, users are able to reconfigure/rebuild
the Linux kernel, debug applications, modify the root file
system, build applications and drivers, download new
FPGAs, reflash the unit OS, and reprogram the
Picoceptor FPGA.

It is important to note that Picoceptor users are not

limited to the provided operating system or FPGA tools.
Alternate solutions (from iVeia, The MathWorks, Xilinx,
Prismtech, Ossie[6], Green Hills, Gnuradio[7], and
Pentek, among others) can be adapted to run inside the
Picoceptor. The choice is largely based on the
developer’s experience and existing IP.

2.5. Analysis

There are several key benefits of the architecture. First, it
is OS agnostic, meaning virtually any operating system
can be hosted by the hardware. Designing for embedded
Linux was key to ensuring this because EL generally has
a bigger footprint than the more optimized real-time
embedded OSs. The tight integration of the processing
hardware with the tuner enables optimized spectral search
as well as monitoring frequency-hopped signals. There is
no power or cost to users for unused features. The design
is “future-proof” in that the processor and VHDL will
carry forward through the next generations of FPGAs.

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved

Basically, the architecture remains the same even as the
underlying technologies advance (e.g., larger FPGA, more
memory, USB 3.0, etc.)

SOFTWARE

SYSTEM

HARDWARE

EMBEDDED LINUX

USER APPLICATIONS

CUSTOM DEVICE DRIVERS

SIGNAL PROCESSING

ENCRYPTION
DIRECTION

FINDING

SIGINT

SPECTRAL
SEARCH

SI
G

N
AL

PR
O

C
ES

S
IN

G

C
U

S
TO

M
P

E
R

IP
H

E
R

A
LSFF

T

FP
U

C
P

U
 S

PE
E

D

FX
12

-F
X6

0

FP
G

A
 S

O
C

USB 2.0 OTGTHUMB DRIVE

GPS

WIFIDISPLAYS

Figure 10. System Expansion.

The capabilities expansion is shown in Figure 10.
Because of the FPGA SOC-based design, floating point
units, DMAs, and fast-fourier transform (FFT) engines
can be added to the system as desired, virtually any
software application (including database, analysis, and
network applications) can be cross-compiled and run on
the platform. Finally, any existing device with a USB
interface can be attached to the system so long as it has a
suitable Linux driver.

Figure 11 demonstrates how multiple Picoceptor

units can be cascaded to form an N-channel system. The
design supports cascaded references so a single 10 MHz
or 1PPS clock from a Global Positioning System (GPS)
source can be used to phase lock multiple units.
Additionally, because of the network-centric design,
complex algorithms can then be distributed across the N
units to provide greater computational capacity.

GPS

RX#1

RX#2

RX#3

RX#N-1

RX#N

RX#4

SINGLE BOARD
COMPUTER

Figure 11. Cascaded Units

3. APPLICATIONS

Two prominent applications for miniature SIGINT
platforms are direction finding/geolocation and spectral
search. It is important that any radio platform take into
account the special requirements of these applications in
the design approach.

3.1. Spectral Search

Spectral search involves scanning multiple RF bands
looking for and logging the presence of new energy to a
file to create a baseline of radio activity so that an
operator may discover new signals as they appear.

The key requirements for a good spectral search

engine are a fast FFT-processing engine, large memory
for storing the FFT bins, and tight integration with the
tuner for maximum processing pipelining. All three
requirements are met with the Picoceptor: the FFT can
be calculated in the FPGA fabric, the large double data
rate (DDR) memory provides ample storage for spectral
data, and the FPGA has direct access to the tuner.

A state machine depicting the spectral search process

is shown in Figure 12. First, the front end is tuned to the
desired frequency, next data is collected, and then lastly
the FFT processing is performed. The resulting data is
averaged against the stored spectral data and new energy
alarms are calculated and recorded. The process repeats as
the front end is stepped across the band(s) of interest.

Window

FFT

Magnitude

Compress

Blackman-Harris

256, 2048 pt., Complex
(data from previous pt)

Log() Including Radio Gain

Average or Max Bin

Collect 1 ms for High Res
128 us for Low Res

Includes Trace Averaging
Function

Settle Time For LO To Reach
Next Point

Tune

Send Data To Shared Memory
(if trace ready)

Includes Trace Priority
Function

Trace Format

1 m
s, 128 us

<500 us

Figure 12. Spectral Search State Machine

It is important to realize that the ultimate scan rate is

limited by three factors: tune time, collection time, and
processing time. The tune time is determined by the front
end hardware and is usually set by the narrowest phase
locked loop (PLL) in the tuner. The Picoceptor has

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved

sub-millisecond tuning. Collection time is determined by
physics. To obtain a particular spectral resolution in hertz,
one has to collect data that approximates the inverse of
that resolution in time. For example, 1 kHz resolution
requires 1 millisecond of data. Finally, processing time is
determined by the available computation resources,
usually a DSP processor or FPGA.

The FFT engine in the Picoceptor is shown in

Figure 13. First a Blackman-Harris window is applied to
the data. Then an FFT is performed. A coordinate rotation
digital computer (CORDIC) module is used to convert the
complex bin data to magnitude. Finally, the log base 2 is
taken (because it is easy to calculate and scales linearly
with log base 10), and the result is output to a first-in
first-out (FIFO) buffer for collection and storage with the
spectral data by the main processor. This particular
implementation uses a 1024-point FFT, 16-bit
input/output resolution, and requires about 130
microseconds to run. Since the processing can overlap the
tune and collection times, it is expected that scan rates of
several GHz/sec are possible with the Picoceptor.

Figure 13. FFT Processing

3.2. Direction Finding (DF)

There are many different methods for determining the
angle of arrival (AOA) or line of bearing (LOB) of a
signal.[8] The single-channel techniques generally require
multiplexing the signals from multiple antenna elements
to feed one receiver which has the processing to
demultiplex the signals to perform DF. If two receivers
are available a straightforward vector correlation can be
performed (with a 180 degree ambiguity). Both the
single-channel and dual-channel methods can be extended
to N elements using a commutator to quickly switch
around the antenna. Commutation requires that the signal
of interest is stable for long periods. Finally, time
difference of arrival (TDOA) methods can also be used.

An example of a single-channel DF algorithm is the
Watson Watt DF (WWDF)[9]. This method highlights
two required features of modern SDR platforms. First,
since the WWDF algorithm requires very distinct
processing relative to typical radio demodulation, it is
important that the platform is easily reconfigured so that

the specialized processing can be loaded on demand.
Second, extensive general-purpose I/O (GPIO) is required
in order to interface the radio to the various antennas. The
antennas may require bias voltages, TTL control lines,
and serial ports; therefore the radio must have flexible
control for maximum compatibility. The Picoceptor
provides several GPIO lines for this purpose.

The WWDF system is shown in Figure 14 and the

gain pattern for the CODEM AVM-1 Antenna is shown in
Figure 15. As seen in the gain pattern, there are two
element pairs East-West (E-W) and North-South (N-S)
oriented perpendicularly. The Picoceptor provides a
150 Hz modulating tone that multiplexes the N-S and
E-W elements onto a single signal. The processing
algorithm in Figure 16 mixes the signal with the original
tones, performs DC averaging, and an arctangent is used
to produce the LOB.

This particular system was implemented in a

Picoceptor and was found to have comparable response
time and accuracy to the larger DF system it replaced.

3.3. TDOA/Geolocation[10]

Geolocation is distinguished from DF in that the
precise emitter location is determined rather than just an
angle. TDOA is used to determine the distance of the
emitter to multiple sensors (usually at least four).

AVM1

SI-8649

Signal
Generator

Rotate Antenna
to Simulate Angle

Whip Antenna

TNC to SMA

Mil to DB-25
Laptop computer

VB App with WW
DF algorithm and

polar plot Command line
application to set

antenna band
select. Special

FPGA to
generate tone.

Pinout:
a - +12V
b - GND
c - Tone H
d - Tone V
e - Data
f - Clk
g - Strobe
h - Response

Power Supply

Figure 14. WWDF System

Figure 15: WWDF Gain Pattern[8]

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved

D

32-Bit
NCO

Fine
Tune

FIR FilterCIC CORDIC

Re{},
Mag{},

Angle{},
Freq{}

BFO

Snapshot

FIFO
To

USB

32-Bit
NCO

From
ADC

2x16x1024

2x16x1024

V.49
PacketizerResampler

C

C

Delta-
Sigma
DAC

To
Phones

BA

A B C D

Optional

D

X

Tone FIR DC
Filter

DF BFO

32-Bit
NCO

Arctan

X

Figure 16. WWDF Processing Algorithm

Since the locations of the sensors are known, the position
of the emitter can then be determined.

TDOA requires several features in the radio. First, all
sensors must operate on the exact same time base. This is
accomplished with GPS and one pulse per second (1PPS)
clock training circuits. Second, the data processing path
must be flushable (so that all sensors can be reset
deterministically), and the output data must be precisely
timestamped. Finally, access to some data network is
required in order that the energy collected at the various
sensors can be directed to some central node for
processing.

The Picoceptor is designed to lock to a 1PPS clock

from most any GPS receiver. The jitter on typical GPS
units is on the order of one hundred nanoseconds. To
improve time resolution, the “sloppy” 1PPS clock signal
is cleaned up by the circuit in Figure 17. Timestamped
data is provided in VITA-49[11] packets. VITA-49 is an
industry initiative to standardize the format and routing of
digital IF data among vendors.[16] Since the
Picoceptor can attach virtually any USB device the
networking options are great: Wi-Fi, Bluetooth, cellular
modems, tactical radios, point-to-point microwave, etc.

The Picoceptor is currently being integrated into

multiple TDOA systems. The performance is comparable
to legacy geolocation systems except that it cannot
accommodate the large ovenized oscillators required for
the system to still operate (“fly wheel”) in the absence of
GPS. This is easily remedied with the use of an external
GPS module with a suitable oscillator. Note that advanced
oscillators such as the chip scale atomic clock
(CSAC)[15] will likely soon remedy this problem.

Phase
Detector

GPS
1PPS IN

10 MHz
VCXO

DAC

/107

1PPS
OUT

To FPGA

To LO
and ADC

Clock
PLLs

ADC

uPPIC

delta

Vo

Figure 17. Clock Training Loop

4. CONCLUSION

This paper has described the design objectives and
considerations that went into the development of the
Picoceptor SDR platform. The architecture and
development tools were discussed and several real-world
applications were implemented and described for the
platform. The Picoceptor represents a significant leap
forward in SDR technology and is able to perform many
functions at a fraction of the SWaP of legacy systems. By
combining FPGA SOC, Embedded Linux, and USB OTG
technologies, the Picoceptor provides a flexible
architecture that is positioned to capitalize on the
technology advancements in these areas for years to
come.

5. REFERENCES

[1] DRS-Signal Solutions, “SI-8649 Datasheet”, May 2008.
[2] http://sca.jpeojtrs.mil/
[3] David Brownell, The GNU/Linux "usbnet" Driver
Framework, http://www.linux-usb.org/usbnet/
[4] http://www.vmware.com/
[5] http://www.ubuntu.com/
[6] http://ossie.wireless.vt.edu/
[7] http://www.gnu.org/software/gnuradio/
[8] Harter, Nathan M, “Development of a Single-Channel
Direction Finding Algorithm”, Master's Thesis, Virginia Tech
University, 2007-04-13.
[9] DRS-Signal Solutions, “Piconote: Watson Watt Single
Channel DF Implementation”, July 2008.
[10] DRS-Signal Solutions, “Piconote: Time Difference of
Arrival”, July 2008.
[11] VITA Radio Transport (VRT) Draft Standard, VITA-49.0 –
2007 Draft 0.21 31 October 2007
[12] http://www.hypres.com/
[13] Gio Cafaro et. al.,“A 100 MHz–2.5 GHz Direct Conversion
CMOS Transceiver for SDR Applications”, Motorola Labs.
2007 IEEE Radio Frequency Integrated Circuits Symposium.
[14] DRS-CODEM, “AVM1 Antenna Manual”, PN# 913187.
[15] R. Lutwak, et. al., “The Chip-Scale Atomic Clock – Recent
Development Progress”, Proceedings of the 35th Annual Precise
Time and Time Interval (PTTI) Systems and Applications
Meeting, December 2-4, 2003, San Diego, CA, pp. 467-478
[16] Bob Normoyle and Paul Mesibov, “The VITA Radio
Transport as a Framework for Software Definable Radio
Architectures”, SDR Forum Conference, November 2008.

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved

	Home
	Papers By Alpha
	Papers By Session

