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ABSTRACT 
 

This paper introduces a novel software definable radio 
(SDR) architecture, called Picoceptor[1], which 
combines tight RF integration, a reconfigurable field-
programmable gate array (FPGA) system on a chip 
(SOC), embedded Linux, and a USB 2.0 on-the-go (OTG) 
interface in a low-cost, low-power platform that fits into a 
shirt pocket. This advanced SDR system technology 
provides extensive savings in size, weight, and power 
(SWaP) by both increasing the functionality and 
flexibility of the processing hardware as well as 
eliminating the need for several typical system 
components. This paper also provides a brief history of 
SDR approaches and technology as well as a detailed 
description of the design objectives and choices when 
developing the Picoceptor architecture. The 
development tool set and environment are described. 
Finally, applications such as geo-location and spectral 
search are discussed with detailed implementation notes 
to highlight the adaptability and flexibility of the 
architecture for a wide range of SDR functions.  
 

HISTORY OF SDR TECHNOLOGY 
 
In the late 1980’s, DRS Signal Solutions, Inc. (DRS-SS) 
was one of the first companies to incorporate digital 
signal processor (DSPs) in its radios. As soon as radios 
contained reprogrammable DSP devices, instead of fixed 
analog circuits, the desire for a software definable radio 
arose.  
 

The evolution of various platforms is depicted in 
Figure 1. Ten years ago a typical SDR consisted of VXI 
or VME modules from various vendors. At least five 
major components were required for a system: a Slot 0 
controller, a VXI rack, a tuner, a digitizer, and a DSP. 

 
Five years ago, it became possible to integrate the 

tuner, digitizer, and DSP into a single module. This 
resulted in the two-slot solution shown in the middle of 
Figure 1. This evolution cut the cost, weight, power, and 
size of systems by half or more. This generation of 
DRS-SS products was dubbed Sunrise.  
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Figure 1. Evolution of SDR Platforms 

 
With the advent of SOC FPGAs, feature-rich and 

embeddable operating systems, standardized USB bus 
peripherals, and advances in miniature RF components, it 
is today possible to implement the same functionality in 
the palm of a hand at a fraction of the SWaP. This 
generation of technology is called Picoceptor.  

 
The software for SDR systems has undergone a 

similar evolution. Ten years ago SDR processing was 
mostly a cobbled together code base consisting of pieces 
of vendor-provided libraries along with customized local 
intellectual property (IP). Today there are entire suites of 
software tools to aid in the development and deployment 
of SDR applications. In the open source world there is 
GNU radio. This approach is free and feature-rich, but 
does not provide professional-level support. For 
professional applications The MathWorks MATLABTM, 
Xilinx, Pentek, and iVeia (among others) can provide full 
tool suites. For applications requiring adherence to the 
Joint Tactical Radio Service/Software-Compliant 
Architecture (JTRS/SCA)[2] , there are several operating 
systems (OSs), middleware, and operating environment 
toolsets from Prismtech, Zeligsoft, et al. 

 
1. SDR REQUIREMENTS 

 
A generic SDR system is shown in Figure 2. The three 
major components are the tuner, which converts radio 
frequency (RF) energy to some lower intermediate 
frequency (IF) suitable for digitization; a demodulator; 
and some control asset such as a personal computer.  
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Figure 2. Typical SDR Platform 

 
As shown, there are three key data spigots that must 

be accessible in some form: raw analog-to-digital 
converter (ADC) output data, baseband in-phase and 
quadrature-phase (I/Q) data, and demodulated data or bits. 
The raw ADC data allows users to build IF/RF panoramic 
displays to help search for signals. The baseband I/Q data 
provides the filtered data to users, who can then feed it 
into software baseband analysis and demodulation 
programs. Finally, the demodulated data is important for 
users wanting direct access to the information on the 
signal of interest.  

 
As long as the three data taps described above are 

available, the SDR system is able to accommodate 
virtually any application. There is, of course, a large trade 
space where the designer must decide which portions of 
the processing to put in software, FPGAs, or DSPs. Each 
designer will generally choose a different mix based on 
the desired application and their particular skills and 
experience. 

 
In addition to providing a flexible data path, the usual 

metrics that apply to radios also apply to SDR platforms. 
Specifically, SWaP and cost can never be too small and 
tuning range, dynamic range, and maximum bandwidth 
can never be too large. 

 
Finally, the architecture should provide for expanded 

capability in multiple dimensions (more memory, 
software upgrades, larger FPGAs, etc.) and not require 
users to pay for, or consume power for, features that they 
do not use. 
 

2. PICOCEPTOR ARCHITECTURE 
 

This section provides some background on the 
technologies available and the ultimate design choices 
made for the Picoceptor RF front end, signal processing 
hardware, and software. 

2.1. RF Front End 
 
In general, three technologies currently exist to allow 
converting RF energy to baseband where it can be 
processed: direct digitization, direct conversion using RF 
application-specific integrated circuits (ASICs), and the 
traditional discrete superheterodyne receiver.  

 
The superheterodyne approach is shown in Figure 3. 

Here the RF energy (after preselection and amplification) 
is mixed with the 1st local oscillator (LO) to an IF. The IF 
is then filtered and amplified before mixing with the 2nd 
LO whose output is then digitized. Since the radio 
selectivity is determined by the IF filter (at a fixed 
frequency), it is much easier to optimize the design for 
maximum dynamic range. As a result, superheterodyne 
systems provide the best overall radio performance at the 
expense of some additional complexity. 

Figure 3. Superheterodyne Approach 
 

With direct digitization (Figure 4) a large portion of 
the RF spectrum is fed into an ADC. By the Nyquist 
theorem, the energy up to one half the ADC clock rate can 
be accessed. Depending upon the input bandwidth of the 
ADC, particular bands can be subsampled to extend the 
maximum frequency further. These systems usually 
consume a lot of power and have marginal dynamic 
range, though they are very inexpensive. The technology 
does not yet exist to provide a good multi-gigahertz 
general-purpose receiver using direct digitization 
although companies like Hypres[12] are improving. 
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Figure 4. Direct Digitization 

 
In recent years the various RF components have been 

increasingly integrated into ASICs with direct conversion 
schemes where the RF energy of interest is directly mixed 
to baseband and its I/Q components are digitized. See 
Figure 5. These systems are very cheap, but their 
performance is limited by the ability to compensate for 
phase and gain differences in the I/Q paths. Even with 
elaborate compensation techniques, the dynamic range of 
direct-conversion receivers is several tens of decibels 
worse than the superheterodyne systems. 

Filter/
Amp ADC DSP

IF
Filter

(SAW)

1st LO 2nd LO

Proceeding of the SDR 08 Technical Conference and Product Exposition. Copyright © 2008 SDR Forum. All Rights Reserved



 

 

 
Figure 5. Direct Conversion. 

 
Given the state of the art of these three approaches, 

the superheterodyne approach used in the Picoceptor 
front end is still the most suitable architecture for general-
purpose, wide-coverage signal intelligence (SIGINT) 
receivers. The Picoceptor designers used a traditional 
conversion scheme but carefully selected VCOs, mixers, 
and amplifiers to reduce the circuit complexity while still 
covering the full 3 GHz tuning range.  
 
2.2. Processing Hardware 
 
Given the current state of technology, the design choices 
for body-wearable radios are fairly straightforward. First, 
in order to accommodate multiple applications and still 
provide sufficient computation resources, it must contain 
a modern FPGA. Second, in order to provide the features 
users expect, it must be able to host a sizeable operating 
system. This determines the random access memory 
(RAM) and FLASH memory requirements. Finally, in 
order to provide system expansion, only serial bus 
standards are appropriate. USB2.0 OTG allows the unit to 
operate as either a device or a host, requires low power, 
and provides sufficient bandwidth for most applications.  

 
There are several controversial issues. The first is 

whether to use a separate processor or a processor 
embedded in the FPGA, itself. Good arguments can be 
made on either side but the Picoceptor team opted for 
the embedded processor so that we would have full 
control over the connectivity of the processor. This allows 
one to add auxilliary processing units (APUs), busses, 
peripherals, direct memory access (DMA) engines, and 
switch clocks dynamically as required. It also protects the 
design from obsolescence and allows optimal sharing of 
the memory resources between the central processing unit 
(CPU) and the signal processing in the FPGA fabric. 

 
A second controversy is whether to include an 

Ethernet interface in the design. Ethernet is actually very 
expensive both in power consumption (500-750 mW) and 
in the size of the large RJ-45 connector. In the context of 

a body-wearable radio, Ethernet ultimately makes no 
sense because there is no place to plug in the other end of 
the Ethernet cable. With USB 2.0, however, users who 
want an Ethernet interface can simply add a USB-to-
Ethernet adaptor dongle and/or emulate Ethernet over a 
simple USB cable using the Linux USBnet driver.[3]  

 
The final back end design is shown in the block 

diagram of the Picoprocessor motherboard as shown in 
Figure 7. The core design requires only five chips: RAM, 
FLASH, FPGA, the USB physical layer (PHY), and a 
system management processor (PIC). The design is 
modular such that any one of these components can be 
upgraded with little effect to the overall system and 
software. 
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Figure 7. Picoprocessor Block Diagram 

 
2.3. Software 
 
There are several vendors providing lightweight, real-
time, embedded operating systems. For maximum 
features and capabilities the Picoceptor uses embedded 
Linux (EL) with a 2.6 kernel. The EL OS design choice 
recognizes that real-time extensions can be added if 
needed and that most any other OS can run in the same 
space as EL. The EL OS gives us the option to be flexible 
in our software. It also provides many methods of 
communication to the Picoceptor, such as Ethernet over 
USB using Transmission Control Protocol/ Internet 
Protocol (TCP/IP) or User Datagram Protocol (UDP), 
RS-232, and USB.  The user may control the Picoceptor 
using three-letter mnemonics or through the 
Picoceptor-based Web Server using a Web browser as 
shown in Figure 8. 
 

The Control Application is a Linux process that 
receives messages from any of the various external 
interfaces and performs command and control of the 
Picoceptor. It is a socket-based program that accepts 
input from the user, parses the command, and calls a 
custom device driver that controls the FPGA. 
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Figure 8. Picoceptor Web-based GUI 
 
A low-level custom device driver is provided that 

allows the user to control and access the Picoceptor 
FPGA hardware. The result of this effort is a kernel 
module that contains functions that can be called by the 
control application using an application programming 
interface (API). The device driver allows the user to 
change parameters such as frequency and attenuation that 
are mapped to FPGA registers. The device driver also 
allows the user to get snapshot data from the FPGA.  

 
Linux also provides the user with the capability to 

write their own applications and load them onto the 
Picoceptor. Users can place their own applications in 
the RAMDISK on the Picoceptor using File Transfer 
Protocol (FTP) and execute them via a telnet session or 
run them as a Linux service.  

 
2.4. Development Tools 
 
Based on experience with previous SDR developments, it 
is clear that user requirements range from turnkey 
solutions with little or no technical knowledge 
requirements to “blank slate” systems for users wanting to 
load their own OS, application software, and/or signal 
processing circuits. As a result the Picoceptor is 
delivered as a fully functioning radio; nevertheless, with 
the purchase of the Pico Developer’s Package (PDP), 
users can get full access to the development tools used at 
the factory.  
 

The PDP contains manuals, programming cables, 
several USB devices, test cables, RF cables, and a DVD. 
The DVD contains a VMWare[4] image of our 
development environment.  

 
The VMware image runs in the VMware player as 

shown in Figure 9. The virtual machine (VM) is a 
complete Ubuntu 6.06 Linux[5] installation containing the 

 

Start

Vmware Player

Host = Windows XP Pro

Guest = Ubuntu 6.06 LTS

 
Figure 9. PDP VMware Image  

 
cross-compilers, source code, and FPGA tools for the 
Picoceptor.  
 

The VM (a) eliminates installation problems (b) 
ensures all users have the exact same tools and versions, 
and (c) allows Windows users to easily access the Linux-
based tools. Some disadvantages of the VM are that it has 
heavy disk and memory requirements, runs more slowly 
than native installations, and has limited hardware 
support. None of these limitations has presented any 
significant problem for Picoceptor developers. 
 

With the VM, users are able to reconfigure/rebuild 
the Linux kernel, debug applications, modify the root file 
system, build applications and drivers, download new 
FPGAs, reflash the unit OS, and reprogram the 
Picoceptor FPGA. 

 
It is important to note that Picoceptor users are not 

limited to the provided operating system or FPGA tools. 
Alternate solutions (from iVeia, The MathWorks, Xilinx, 
Prismtech, Ossie[6], Green Hills, Gnuradio[7], and 
Pentek, among others) can be adapted to run inside the 
Picoceptor. The choice is largely based on the 
developer’s experience and existing IP.  

 
2.5. Analysis 
 
There are several key benefits of the architecture. First, it 
is OS agnostic, meaning virtually any operating system 
can be hosted by the hardware. Designing for embedded 
Linux was key to ensuring this because EL generally has 
a bigger footprint than the more optimized real-time 
embedded OSs. The tight integration of the processing 
hardware with the tuner enables optimized spectral search 
as well as monitoring frequency-hopped signals. There is 
no power or cost to users for unused features. The design 
is “future-proof” in that the processor and VHDL will 
carry forward through the next generations of FPGAs. 
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Basically, the architecture remains the same even as the 
underlying technologies advance (e.g., larger FPGA, more 
memory, USB 3.0, etc.)  
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Figure 10. System Expansion. 
 

The capabilities expansion is shown in Figure 10. 
Because of the FPGA SOC-based design, floating point 
units, DMAs, and fast-fourier transform (FFT) engines 
can be added to the system as desired, virtually any 
software application (including database, analysis, and 
network applications) can be cross-compiled and run on 
the platform. Finally, any existing device with a USB 
interface can be attached to the system so long as it has a 
suitable Linux driver. 

 
Figure 11 demonstrates how multiple Picoceptor 

units can be cascaded to form an N-channel system. The 
design supports cascaded references so a single 10 MHz 
or 1PPS clock from a Global Positioning System (GPS) 
source can be used to phase lock multiple units. 
Additionally, because of the network-centric design, 
complex algorithms can then be distributed across the N 
units to provide greater computational capacity. 
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Figure 11. Cascaded Units 

 

3. APPLICATIONS 
 

Two prominent applications for miniature SIGINT 
platforms are direction finding/geolocation and spectral 
search. It is important that any radio platform take into 
account the special requirements of these applications in 
the design approach.  
 
3.1. Spectral Search 
 
Spectral search involves scanning multiple RF bands 
looking for and logging the presence of new energy to a 
file to create a baseline of radio activity so that an 
operator may discover new signals as they appear. 

 
The key requirements for a good spectral search 

engine are a fast FFT-processing engine, large memory 
for storing the FFT bins, and tight integration with the 
tuner for maximum processing pipelining. All three 
requirements are met with the Picoceptor: the FFT can 
be calculated in the FPGA fabric, the large double data 
rate (DDR) memory provides ample storage for spectral 
data, and the FPGA has direct access to the tuner. 

 
A state machine depicting the spectral search process 

is shown in Figure 12. First, the front end is tuned to the 
desired frequency, next data is collected, and then lastly 
the FFT processing is performed. The resulting data is 
averaged against the stored spectral data and new energy 
alarms are calculated and recorded. The process repeats as 
the front end is stepped across the band(s) of interest.  
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Figure 12. Spectral Search State Machine 
 
It is important to realize that the ultimate scan rate is 

limited by three factors: tune time, collection time, and 
processing time. The tune time is determined by the front 
end hardware and is usually set by the narrowest phase 
locked loop (PLL) in the tuner. The Picoceptor has 
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sub-millisecond tuning. Collection time is determined by 
physics. To obtain a particular spectral resolution in hertz, 
one has to collect data that approximates the inverse of 
that resolution in time. For example, 1 kHz resolution 
requires 1 millisecond of data. Finally, processing time is 
determined by the available computation resources, 
usually a DSP processor or FPGA. 

 
The FFT engine in the Picoceptor is shown in 

Figure 13. First a Blackman-Harris window is applied to 
the data. Then an FFT is performed. A coordinate rotation 
digital computer (CORDIC) module is used to convert the 
complex bin data to magnitude. Finally, the log base 2 is 
taken (because it is easy to calculate and scales linearly 
with log base 10), and the result is output to a first-in 
first-out (FIFO) buffer for collection and storage with the 
spectral data by the main processor. This particular 
implementation uses a 1024-point FFT, 16-bit 
input/output resolution, and requires about 130 
microseconds to run. Since the processing can overlap the 
tune and collection times, it is expected that scan rates of 
several GHz/sec are possible with the Picoceptor. 

 

 
 

Figure 13. FFT Processing 
 

3.2. Direction Finding (DF) 
 
There are many different methods for determining the 
angle of arrival (AOA) or line of bearing (LOB) of a 
signal.[8] The single-channel techniques generally require 
multiplexing the signals from multiple antenna elements 
to feed one receiver which has the processing to 
demultiplex the signals to perform DF. If two receivers 
are available a straightforward vector correlation can be 
performed (with a 180 degree ambiguity). Both the 
single-channel and dual-channel methods can be extended 
to N elements using a commutator to quickly switch 
around the antenna. Commutation requires that the signal 
of interest is stable for long periods. Finally, time 
difference of arrival (TDOA) methods can also be used.  
 

An example of a single-channel DF algorithm is the 
Watson Watt DF (WWDF)[9]. This method highlights 
two required features of modern SDR platforms. First, 
since the WWDF algorithm requires very distinct 
processing relative to typical radio demodulation, it is 
important that the platform is easily reconfigured so that 

the specialized processing can be loaded on demand. 
Second, extensive general-purpose I/O (GPIO) is required 
in order to interface the radio to the various antennas. The 
antennas may require bias voltages, TTL control lines, 
and serial ports; therefore the radio must have flexible 
control for maximum compatibility. The Picoceptor 
provides several GPIO lines for this purpose.  

 
The WWDF system is shown in Figure 14 and the 

gain pattern for the CODEM AVM-1 Antenna is shown in 
Figure 15. As seen in the gain pattern, there are two 
element pairs East-West (E-W) and North-South (N-S) 
oriented perpendicularly. The Picoceptor provides a 
150 Hz modulating tone that multiplexes the N-S and 
E-W elements onto a single signal. The processing 
algorithm in Figure 16 mixes the signal with the original 
tones, performs DC averaging, and an arctangent is used 
to produce the LOB.  

 
This particular system was implemented in a 

Picoceptor and was found to have comparable response 
time and accuracy to the larger DF system it replaced.  

 
3.3. TDOA/Geolocation[10] 
 

Geolocation is distinguished from DF in that the 
precise emitter location is determined rather than just an 
angle. TDOA is used to determine the distance of the 
emitter to multiple sensors (usually at least four). 
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Figure 14. WWDF System 

 

 
 

Figure 15: WWDF Gain Pattern[8] 
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Figure 16. WWDF Processing Algorithm  

 
Since the locations of the sensors are known, the position 
of the emitter can then be determined. 
 

TDOA requires several features in the radio. First, all 
sensors must operate on the exact same time base. This is 
accomplished with GPS and one pulse per second (1PPS) 
clock training circuits. Second, the data processing path 
must be flushable (so that all sensors can be reset 
deterministically), and the output data must be precisely 
timestamped. Finally, access to some data network is 
required in order that the energy collected at the various 
sensors can be directed to some central node for 
processing.  

 
The Picoceptor is designed to lock to a 1PPS clock 

from most any GPS receiver. The jitter on typical GPS 
units is on the order of one hundred nanoseconds. To 
improve time resolution, the “sloppy” 1PPS clock signal 
is cleaned up by the circuit in Figure 17. Timestamped 
data is provided in VITA-49[11] packets. VITA-49 is an 
industry initiative to standardize the format and routing of 
digital IF data among vendors.[16]  Since the 
Picoceptor can attach virtually any USB device the 
networking options are great: Wi-Fi, Bluetooth, cellular 
modems, tactical radios, point-to-point microwave, etc.  

 
The Picoceptor is currently being integrated into 

multiple TDOA systems. The performance is comparable 
to legacy geolocation systems except that it cannot 
accommodate the large ovenized oscillators required for 
the system to still operate (“fly wheel”) in the absence of 
GPS. This is easily remedied with the use of an external 
GPS module with a suitable oscillator. Note that advanced 
oscillators such as the chip scale atomic clock 
(CSAC)[15] will likely soon remedy this problem. 
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Figure 17. Clock Training Loop 
 

4. CONCLUSION 
 

This paper has described the design objectives and 
considerations that went into the development of the 
Picoceptor SDR platform. The architecture and 
development tools were discussed and several real-world 
applications were implemented and described for the 
platform. The Picoceptor represents a significant leap 
forward in SDR technology and is able to perform many 
functions at a fraction of the SWaP of legacy systems. By 
combining FPGA SOC, Embedded Linux, and USB OTG 
technologies, the Picoceptor provides a flexible 
architecture that is positioned to capitalize on the 
technology advancements in these areas for years to 
come.  
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