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ABSTRACT 

 

In [1], the authors compare traditional RTL design flow to 

that of model-based design, applying both to a common 

problem – implementation of the physical layer of 

SATCOM waveform MIL-STD-188-165a. They report a 

10:1 improvement in productivity in the areas of algorithm 

simulation testing, code generation, and waveform 

integration. That study carried the comparison through to the 

point of hardware-in-the-loop testing, each design 

implemented autonomously in a single FPGA node, looping 

back the transmit signal to the receiver. In the current paper 

we describe an effort to complete the waveform 

implementation thru interoperability with another node, a 

COTS modem. Finally, a paradigm for creating SCA-

compliant FPGA-hosted components via auto-code 

generation is proposed, and the impact and implications that 

this can have on code reuse is discussed. 

 

1. INTRODUCTION 

 

Field-Programmable-Gate Arrays (FPGAs) are increasingly 

used in the implementation of software-defined radios 

(SDRs), particularly for the implementation of the baseband 

processes in wideband modems.  This is due to the fact that 

they are inherently reconfigurable at runtime, a feature 

clearly required of SDRs and not possible with Application 

Specific Integrated Circuits (ASICs).   It is also something 

that allows them to be more amenable, to some degree, to 

the Software Communications Architecture (SCA) standard 

required of JTRS Radios.    

 To encourage their use as an alternative to the ASIC, 

FPGA developers have produced a suite of development 

tools and programming methods that closely mirror existing 

ASICs design flows.  This has had the effect of discouraging 

entry into the pool of FPGA developers, somewhat limiting 

this pool to those already having a background in chip 

design.  In the last six years, however, this situation has been 

changing due to the emergence of a new class of FPGA 

programming flows based on high level modeling in Matlab, 

Simulink, C, and UML.  Those that function within the 

Simulink environment include the Xilinx System Generator 

for DSP
TM

, the Altera DSP Builder
TM

, and Synplicity’s 

Synplify DSP
TM

.   These are in essence opening a new path 

to RTL (Register Transfer Level) design by adding an 

additional layer of abstraction to the layer already provided 

by VHDL (or Verilog).    This is making it easier for a larger 

audience to become FPGA developers, and increasing 

developer productivity, especially in the area of modem 

development [1].  

 It is interesting to note the type of developers who, from 

this author’s viewpoint, are using the tool.  One group that is 

more readily accepting the tool are the algorithm developers, 

those who may lack expertise in the traditional ASIC 

hardware design flow, but have a good knowledge of DSP, 

Matlab and Simulink.    For this group these tools provide a 

pathway to architecting, synthesizing, and validating high 

performance algorithms on real hardware.  The other group 

is the traditional FPGA designer who is well versed in the 

more deeply entrenched methods of RTL development.  For 

them these tools are often accepted more slowly, particularly 

because these individuals can already produce the FPGA-

hosted functionality they need by using methods they 

already know quite well and also because they see 

shortcomings in the tools, either real or perceived due to 

their inexperience.   Nevertheless, this relatively new FPGA 

development flow based on model-based design is proving 

to provide significant productivity improvements over 

traditional methods [2,3,4,5], not only through the avoidance 

of hand-coding, but by enabling better exploration of the 

architecture space, by combining into a single model the 

models used for algorithm development and the model used 

for code generation, and by creating a better environment for 

joint development of the algorithm, the code, and the test 

vectors involved in producing embedded DSP on FPGAs. 

 Recently [1,4] BAE Systems and Xilinx took advantage 

of a unique opportunity to compare the new and traditional 

RTL design methodologies discussed above.   Two 

development efforts were run in parallel, both seeking to 

implement a subset of the SATCOM waveform, MIL-STD-

188-165a, on a pair of software-defined radio platforms.   In 

both cases the individuals working these efforts were experts 

in the design methodology they employed.  In addition, both 

had access to an identical set of IP cores, therefore keeping 

the comparison fair.  The effort for each design was 

measured in man-hours, each developer logging their time as 

well as noting features of the design flow that were 

particularly easy or troublesome.  The results of the study 

were quite remarkable – the design developed with model-

based design produced in less than 1/10th the total hours of 
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the traditional approach!   This is a result that is not only 

quite amazing, but often also received understandably with 

caution and skepticism.  Can one conclude from these results 

that model-based RTL development will consistently 

achieve similar savings when developing the physical layer 

of software defined radios?  I think it safe to say that this 

example yielded a productivity improvement result that is on 

the high side of the typical or average result.   Nevertheless, 

it shows that in cases such as these, model-based design can 

very significantly improve the process of RTL development.  

Additional studies are needed to hone in on the typical 

improvement achievable in modem development.    

 To this end, we are working to continue the MIL-STD-

188-165a case study, carrying it through the implementation 

of a complete receiver and transmitter (not simply a loop 

back within a single FPGA), a transceiver capable of 

transmitting and receiving from another node, and therefore 

including all needed receiver tracking functions -- carrier, 

phase, gain and bit tracking.   To prove this, a subsequent 

goal is interoperation of the transmitter and receiver with a 

COTS MIL-188-165a modem, a modem known to adhere to 

the standard, the Radyne DMD2050.   Thus we are 

connecting the Radyne with a LyrTech FPGA platform 

hosting the BAE developed implementation of that same 

waveform.   Section 2 describes this ongoing work and the 

experience that one particular author had in delving into 

System Generator to accomplish it.  

 A secondary goal of the effort is the production of a test 

bench for evaluation of new methods for creation of SCA-

compliant components hosted on FPGAs.  An approach is 

proposed in Section 3 which addresses a key impediment to 

the hosting of SCA components on FPGAs – inefficiency. 

 

2. IMPLEMENTATION RESULTS 

 

An objective this case study (Part II) is to capture the efforts 

required to design, code, and integrate on hardware a MIL-

188 waveform capable of interoperating with another 

modem, comparing the model-based design flow being 

applied currently with the traditional design flow applied to 

this same problem done one year earlier.   One author, who 

is an expert in traditional RTL design flow, developed the 

original design using those methods with which he is very 

familiar.  He also did the work described below to produce a 

very similar design using model-based design.   Thus we 

have the unique opportunity have the same individual 

perform both designs, thereby removing the variability 

associated with the capabilities of two different individuals.   

This also afforded us the opportunity to assess SysGen from 

the viewpoint of a new user having extensive RTL 

development experience but little model-based or SysGen 

experience.   The following sections describe the startup 

process, the waveform design, and the noted benefits/issues 

that occurred. 

 

2.1. Getting Started – Conversion from RTL to Model-

based Developer 

 

Starting with a digital hardware design background and 

VHDL firmware experience meant that three new software 

tools had to be learned.  Learning the Matlab language and 

its companion graphic modeling tool Simulink, both from 

MathWorks, was the first step.  With sufficient software 

experience the new language is easy to learn and there are 

hundreds of books that teach it or include examples.  The 

user doesn’t need a strong understanding of Matlab before 

moving on to learning Simulink, and it is very convenient to 

use them together.  A class in Simulink just scratches the 

surface of what the tool can do, but for the purposes of 

Sysgen, much of complexity and details can be skipped.  

Mastery of Matlab and Simulink really requires practice and 

individual concentration on the specialized toolbox and 

blocksets applicable to your discipline. The number of 

functions, parameters, and examples available could take a 

life time to learn. Nevertheless, the circuit design engineer 

can get started faster if he can concentrate on the hardware 

aspects of Sysgen while teamed with a system engineer with 

more of a mathematical background and presumably years 

of experience in signal processing analysis and modeling. 

The three day Xilinx DSP Design Flow class was intense 

and essential to getting started.  There are a lot of new 

concepts and features that would be hard to pickup on your 

own.  Topics included familiarization with the library of 

building blocks, number representation, clock enables, 

simulation, and synthesis.  Even with the training it took a 

bit of practice and thinking how to best apply this tool to the 

design at hand. 

 
2.2. The Waveform  

 

The current design goal is to implement a subset of the 

Department of Defense standard MIL-STD-188-165A for 

satellite communication, including BPSK, QPSK, and 

OQPSK waveforms. The approach has been to start off with 

the simplest BPSK waveform and expand the design in 

stages until a full implementation and compliance is met. 

The design accommodates numerous selectable data rates up 

to 10 Mbps and includes various coding options including 

differential encoding, convolutional FEC encoding, and 

Reed Solomon encoding.  

 The Lyrtech VHS ADC V4 board with a DAC add-on 

contains a Xilinx Virtex-4 FPGA, a fixed 104MHz 

oscillator, ADC and DAC channels clocked at the 104 Msps 

rate.  Lyrtech supplies a board support package that 

specifically handles Sysgen designs providing a wrapper 

with all necessary interfaces to control via software and the 

cPCI bus and access to various digital I/O in addition to the 

ADC and DAC chips. This arrangement allows not only 
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remote configuration of the FPGA but also Hardware in the 

Loop simulations in conjunction with Simulink. 

 Due to other priorities, this project began only one 

month prior to this writing.   Consequently, our initial 

interoperability goal has been restricted to that of the 

transmiter, as it is naturally less complex than the receive 

side. In the transmitter, shown in Figure 2.1, the circuit 

design generates the programmable data rate clock and 

registers the data input into a FIFO. Buffering is necessary 

because the data rates are programmed with a resolution that 

is not achievable by the simple integer division of the 

sampling clock. The data is clocked out of the FIFO, 

scrambled, differentially encoded, and optionally FEC 

encoded by a one half rate convolutional encoder. The data 

rate is either unchanged or double the initial rate at this 

point. Reed Solomon block coding and interleaving can be 

added. This presents a complication because the check 

symbols added to the data by Reed Solomon results in an 

increase in data rate that is not an integer but an awkward 

ratio of numbers.  If the information data block size were 

239 bytes and the number of check bytes added were 16, 

then for every 239 byte in 255 bytes would shift out. The 

encoded data rate in, this fictitious example would grow by 

255/239 which is approximately 1.067.  A fractional ratio 

guarantees that you won’t get a conveniently commensurate 

relationship between the data rate and the sampling rate 

clock. Interpolation will be used extensively to not only 

increase the sampling rate but also to alter it to an integer 

submultiple of the unrelated sampling clock.  

 To align the signal samples running at four times the 

data rate to the incommensurate rate of the DAC clock we 

need to perform a rate change through the a programmable 

interpolator. Interpolators can multiply the sample rate of a 

bandlimited signal by an integer or even by a rational ratio, 

e.g. P/Q, if needed to produce a new sampled signal running 

at the desired rate. In this case we need the interpolator to 

take pulse shaped data signal sampled at four times the data 

rate and bring it up to an integer multiple of the half the 

sampling rate, i.e. 52 MHz. The interpolator used in this 

design multiplies the data by a factor of 1040/Q and is then 

followed by a fixed times two interpolator.  This cascade of 

filters and interpolators results in a programmable data rate 

of 4 * 1040/Q * 2 which results in the exact DAC clock 

sampling rate of 104 MHz. The result of these figures is that 

for any non-zero positive integer value of Q the data rate can 

be programmed with a resolution of 12.5Kbps. 

  
2.3 Benefits/Issues when Designing with SysGen 

 

The first step in recording and communicating the design is 

to form a series of block diagrams in a tool like Visio for 

instance. This is the natural way the human brain works 

most efficiently.   In addition, it is why board level circuit 

schematics continue to be drawn and why a programmer or 

VHDL designers often resort to drawing a sketch to clarify a 

point. So there are strong reasons to desire an effective 

design graphically based design tool for firmware and good 

reason to assume that better productivity can result. 

Schematic based design tools for firmware exist but have not 

dominated the industry for a number of reasons. Text based 

design using VHDL and Verilog hardware design languages 

still dominate despite the fact that they can be unnatural and 

tedious. Despite these obvious disadvantages, they are 

widely used because of the perceived advantages in the areas 

of standardization, reuse, portability, and wide spread 

knowledge base. Unfortunately even with the latest 

refinements available from competing vendors, these tools 

can’t provide the level of productivity desired. Wider spread 

availability and diversification of IP blocks has provided the 

last significant boost in productivity with this methodology.  

 Sysgen brings a lot more to the table than the schematic 

capture tools ever attempted while providing all the natural 

desirability of a graphical tool. Matlab, Simulink, Sysgen, 

and ISE essentially form an integrated design environment 

(IDE) optimized for the development of signal processing 

models and implementation. You can calculate filter 

coefficients easily with numerous design functions in 

Matlab. You can then paste the values or the formulas 

directly into the parameter dialogs of the Sysgen blocks. 

You can then simulate a combination of synthesizable 

models in parallel with conventional Simulink models and 

 

FEC 

Conv

FEC 

Conv

RS

RS

BPSK

Mod

Pulse 

Shape 

FIR

x 2

Programable

Interpolation

P/Q

1040

Q
x 

Fixed

Interp

x 4

for Q = 1 to 954

x  1040 down 

fs = 104 MHz

Data
TX DAC 

Samples

12,500x Q

Exactly 62.5 kbps to 

5.9 Mbps in steps of 

12.5kbps for all FEC 

modes

Switched

Interp  x1 

or M/N

=12.5KHz to 11.9 MHz

6,250 x Q =6.25KHz to 5.96 MHz

M

N
x 

With RS compensating Interpolator

Figure 2.1 – Transmit Diagram 
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compare them on a waveform display modeled after an 

oscilloscope. You can capture the results into the Matlab 

workspace and immediately plot them or their spectrum. The 

flow from simulation to design to evaluation and verification 

can be very fluid and represents a breakthrough in a fully 

integrated development environment.  

 The long sought holy grail of closing the gap between 

system engineering analysis and hardware design 

engineering may finally have arrived. If the communication 

system signal processing system engineer with strengths in 

mathematics and modeling can successfully communicate 

and share a common understanding and design with the 

hardware design engineer, a lot less information and 

mistakes will be made. Typically a system engineer’s design 

is simulated and reported, and his job is done. The hardware 

engineer picks it up and inevitably starts his design from a 

partial understanding of what was accomplished with a set of 

tools that operate in the implementation domain with 

absolutely no semblance to the original model. The model is 

necessarily discarded and the final hardware design can not 

be verified against the original model that the system 

engineer worked so hard to perfect. With Sysgen the 

diagram is the model, which is simulated and analyzed with 

Simulink and Matlab, and it is also the firmware design that 

is generated and also simulated to verify successful 

translation.  Design errors in the model are found and 

corrected earlier in the design process and the use of this 

same model through the implementation can be verified to 

be identical. The discovery of defects during the hardware 

design, or worse, after the product is completed because of 

faulty verification can be very costly. Many have been 

seeking the ultimate tool that accepts a design drawing and 

by pushing the magical button, the hardware automatically 

appears. We may never perfect this process but we may be 

close enough to make significant improvements in 

productivity and life cycle cost reduction. 

  Sysgen does a number of things behind the scenes that 

can save time.  One has to know how it handles different 

clocking rates. Good design practice dictates that you design 

entirely synchronously and minimize the number of clock 

domains. Sysgen assumes that you are using one clock for 

the entire design, or subdesign.  Within this clock domain it 

generates the appropriate clock enables at any integer 

submultiple of the clock invisibly.  If you have an 

interpolating filter that produces four outputs for every input 

sample the clock rate divided by one and divided by four 

clock enables are automatically generated.  Also if you insert 

this filter block into the design and run the input rate at the 

full clock rate it will generate an error.  The filter needs the 

output clock to run at four times the input rate and that 

wouldn’t be possible if the input rate is running at the full 

rate.  If you are not entirely familiar with the internal design 

of a block, this can surprise you.  Sometimes it is not that 

easy to determine why the error is happening but it usually 

can be avoided if the author of the block reveals the 

clocking requirements in help text.  We encountered these 

errors quite often while learning to use the tool and applying 

FIR filter components that were predesigned and provided 

by the library.   

 Although Sysgen excels at signal processing signal 

flows, there was skepticism initially about how well it would 

handle other functions like control timing, state machines 

and the like. One could certainly continue using a VHDL top 

level design and inserting signal processing subsystems 

designed with Sysgen as needed. When something a bit 

more complex is needed like a BER detector and counter, 

the choice depends on which tool the individual designer 

feels most comfortable using.  There was also the question 

of whether a state machine which is clearly a control 

mechanism can effectively be written and debugged in 

Sysgen.  Mcode blocks seem to have solved this problem, 

allowing you to use a subset of Matlab code which is just as 

descriptive and well documented as the VHDL version.   

 The interested reader is referred to the presentation 

material for the quantitative comparison of the two design 

flows when applied through interoperability. 

 
3. AN APPROACH FOR FPGA-HOSTED SCA 

COMPONENTS  

 

The US DoD is sponsoring the development of the Joint 

Tactical Radio System (JTRS), a family of SDRs requiring 

the use of a software module interface standard called the 

Software Communications Architecture, or SCA [6,7].    

The goal of the SCA is to enable software portability, 

thereby promoting software reuse across platforms, reducing 

costs, shortening development schedules, and quickening the 

incorporation of new processing devices as they become 

available.    

 The SCA as originally designed applies to General 

Purpose Processors (GPPs) which have sufficient resources 

to support a CORBA transport interface between 

components. Several different approaches have been 

suggested to extend the SCA to Special Hardware 

Processors (SHPs). We will look at the simplest approach 

that will enable us to integrate the functionality generated by 

SysGen into an SCA compliant application. The focus of 

this discussion shall be an architecture involving a single 

GPP connected to one or more FPGAs.    

 An often heard complaint leveled toward the SCA is 

that of code or processor inefficiency [8].  Inefficiency 

impacts power consumption, size, and cost, none of which 

can be spared particularly in handheld devices.   This is 

especially true with FPGAs.   In many applications there are 

often little to no resources available for a CORBA-type of 

interface.   Another issue directly related to inefficiency is 

the complexity of the interface.    FPGA interfaces have 
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traditionally been quite simple.   For example, in an older 

family of BAE radios the interface is just clock and data, 

with a single bit value clocked in at a steady clock rate.   

There is probably no interface that is simpler or uses fewer 

FPGA resources.   As data rate requirements have increased, 

high performance serial transport links are being 

incorporated such as RapidIO and PCI Express.  Allowing 

the FPGA designer to select the data interface type 

appropriate for the design ensures processor efficiency, as 

an appropriately sized interface can be used.   Code 

portability and reuse can be achieved by standardizing on 

the interface design as described below.    

 Another problematic notion for SCA compliant FPGAs 

is that of runtime component deployment and connectivity.   

The use of multiple SCA components in a single FPGA 

connected at runtime does not fit with the FPGA design 

flow.   It implies that the synthesis, mapping, and the place 

& route operations be performed at the radio node, which is 

impractical as the radio nodes will often not have the 

processing resources needed to accomplish those tasks 

which can take hours even on a powerful workstation.      

 Runtime deployment can be anticipated though. Keep in 

mind that every possible deployment involves a mapping of 

components to processors. Each of these deployments needs 

to be tested before the SCA waveform is released. Hence an 

FPGA loadable bit-stream can be created a-priori for each of 

these deployments.  Unanticipated designs would be built 

when defined and uploaded through the network.  Another 

option to consider is the use of partially reconfigurable 

FPGAs with a single component per reconfigurable area and 

CORBA interfaces between them. A single reconfigurable 

FPGA is comparable to multiple non-reconfigurable FPGAs, 

hence this a-priori placing and routing will still be sufficient. 

 

SCA Enabling RTL logic involves three major steps: 

 

1 Communicating data to and from the RTL logic 

2 Providing the RTL logic with values for it’s 

configurable properties 

3 Somehow implementing the CORBA CF::Resource 

interface for the RTL logic 

 

One of the proposed standards for SCA-enabling FPGAs is 

the Component Portability Standard (CPS, also known as 

CP289) [9,10]. It provides guidelines as to how to 

implement the three steps mentioned above.  CPS discusses 

the use of the Open Cores Protocol (OCP) as a basis for 

interface definition since it is bus, technology, and language 

independent.   The proposed approach, embracing that idea, 

is as follows: 

 

• Allow the selection of the FPGA interface type 

appropriate to the design, thereby having minimal if any 

impact on efficiency. 

• Define the interface layout using OCP as a guide and 

apply that to all SCA components to be hosted on that 

FPGA, thereby enabling reuse 

• Use the CPS idea of a global proxy to encapsulate the 

RTL logic as a single SCA component, thereby having 

no impact to the SCA with regard to the FPGA-hosted 

component, 

 

 As a tutorial example of this approach, consider how it 

is being applied in the design of the MIL-STD-188 

waveform.   In that application, Dual Port RAM was 

selected as the interface to carry data into and out of the 

transmitter and receiver.   As shown in Figure 3.1, a single 

SCA component is contained in the FPGA, with a global 

proxy creating the SCA interface and including access to the 

data and address busses connected to the FPGA hosted 

RAM.   The entire RTL logic, including the Dual Port RAM, 

is being constructed in SysGen.   Note that this approach can 

be extended to allow for a high speed link, for example, PCI 

Express, by placing the associated core in the data flow path.  

The content of RAM, i.e. the memory map, is defined to 

include 4 segments: Configuration Parameters, Control and 

Status Words, and Data.  The Configuration Parameters are 

read by the proxy to understand the interface and device 

operation.   Control & Status Words are defined to contain 

the OCP suggested control flags (initialize, start, run, stop, 

release, configure, test), and the status flags (init done, 

release done, config done, test passed), with port control 

handled as suggested in Figure 3.2.  A single proxy 

component can interface with any FPGA module written to 

this standard.  A new waveform definition with a different 

FEC module, for example, built to this same standard, 

permits the proxy to be reused.   In addition, the source code 

in the form of the SysGen model is also reused, although 

modified in accordance with the new FEC scheme.  Note 

that this approach, applied here with RAM, can just as easily 

be applied with other common interface types, such as a 

FIFO, PCI Express, or others.    Another potential advantage 

of precise definition of the interface content is the potential 

for auto-generating the GPP code implementing the proxy. 

 

4. CONCLUSIONS 

 
RTL development using the model-based design flow is 

contrasted to the traditional design flow in this continuing 

case study involving MIL-STD-188-165a.   This paper 

describes the work to complete the waveform development 

through interoperability with a COTS modem, logging the 

time consumed by the effort and comparing that to a prior, 

traditional-flow effort.    A method for design of FPGA-

hosted SCA components is provided.   This method has a 

significant advantage over those that place CORBA-like 

constructs into the FPGA, having minimal impact on 
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resource efficiency and allowing reuse by creation of 

interface standards. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.1 – The MIL-188 example shown using a dual-port ram interface, one of many possible interface types; note a 

single SCA component per FPGA 

 

 

 
 

Figure 3.2 – MIL-188 FPGA block diagram with dual-port ram interfaces containing data and OCP defined control, 

status, and configuration parameters, memory mapped within RAM 
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